不能。
全息干板上的物質只能經過一次曝光,在接受曝光之后不再具有二次曝光能力,即使使用其他波長的光再次進行曝光也不會得到記錄。
什么是全息照片?
全息技術是利用干涉和衍射原理記錄并再現物體真實的三維圖像的記錄和再現的技術。其第一步是利用干涉原理記錄物體光波信息,此即拍攝過程:被攝物體在激光輻照下形成漫射式的物光束;另一部分激光作為參考光束射到全息底片上,和物光束疊加產生干涉,把物體光波上各點的位相和振幅轉換成在空間上變化的強度,從而利用干涉條紋間的反差和間隔將物體光波的全部信息記錄下來。記錄著干涉條紋的底片經過顯影、定影等處理程序后,便成為一張全息圖,或稱全息照片;其第二步是利用衍射原理再現物體光波信息,這是成象過程:全息圖猶如一個復雜的光柵,在相干激光照射下,一張線性記錄的正弦型全息圖的衍射光波一般可給出兩個象,即原始象(又稱初始象)和共軛象。再現的圖像立體感強,具有真實的視覺效應。全息圖的每一部分都記錄了物體上各點的光信息,故原則上它的每一部分都能再現原物的整個圖像,通過多次曝光還可以在同一張底片上記錄多個不同的圖像,而且能互不干擾地分別顯示出來。
全息原理是“一個系統原則上可以由它的邊界上的一些自由度完全描述”,是基于黑洞的量子性質提出的一個新的基本原理。其實這個基本原理是聯系量子元和量子位結合的量子論的。其數學證明是,時空有多少維,就有多少量子元;有多少量子元,就有多少量子位。它們一起組成類似矩陣的時空有限集,即它們的排列組合集。全息不全,是說選排列數,選空集與選全排列,有對偶性。即一定維數時空的全息性完全等價于少一個量子位的排列數全息性;這類似“量子避錯編碼原理”,從根本上解決了量子計算中的編碼錯誤造成的系統計算誤差問題。而時空的量子計算,類似生物DNA的雙螺旋結構的雙共軛編碼,它是把實與虛、正與負雙共軛編碼組織在一起的量子計算機。這可叫做“生物時空學”,這其中的“熵”,也類似“宏觀的熵”,不但指混亂程度,也指一個范圍。時間指不指一個范圍?從“源于生活”來說,應該指。因此,所有的位置和時間都是范圍。位置“熵”為面積“熵”,時間“熵”為熱力學箭頭“熵”。其次,類似N數量子元和N數量子位的二元排列,與N數行和N數列的行列式或矩陣類似的二元排列,其中有一個不相同,是行列式或矩陣比N數量子元和N數量子位的二元排列少了一個量子位,這是否類似全息原理,N數量子元和N數量子位的二元排列是一個可積系統,它的任何動力學都可以用低一個量子位類似N數行和N數列的行列式或矩陣的場論來描述呢?數學上也許是可以證明或探究的。
1、反德西特空間,即為點、線、面內空間,是可積的。因為點、線、面內空間與點、線、面外空間交接處趨于“超零”或“零點能”零,到這里是一個可積系統,它的任何動力學都可以有一個低一維的場論來實現。也就是說,由于反德西特空間的對稱性,點、線、面內空間場論中的對稱性,要大于原來點、線、面外空間的洛侖茲對稱性,這個比較大一些的對稱群叫做共形對稱群。當然這能通過改變反德西特空間內部的幾何來消除這個對稱性,從而使得等價的場論沒有共形對稱性,這可叫新共形共形。如果把馬德西納空間看作“點外空間”,一般“點外空間”或“點內空間”也可看作類似球體空間。反德西特空間,即“點內空間”是場論中的一種特殊的極限。“點內空間”的經典引力與量子漲落效應,其弦論的計算很復雜,計算只能在一個極限下作出。例如上面類似反德西特空間的宇宙質量軌道圓的暴漲速率,是光速的8.88倍,就是在一個極限下作出的。在這類極限下,“點內空間”過渡到一個新的時空,或叫做pp波背景。可精確地計算宇宙弦的多個態的譜,反映到對偶的場論中,我們可獲得物質族質量譜計算中一些算子的反常標度指數。
2、這個技巧是,弦并不是由有限個球量子微單元組成的。要得到通常意義下的弦,必須取環量子弦論極限,在這個極限下,長度不趨于零,每條由線旋耦合成環量子的弦可分到微單元10的-33次方厘米,而使微單元的數目不是趨于無限大,從而使得弦本身對應的物理量如能量動量是有限的。在場論的算子構造中,如果要得到pp波背景下的弦態,我們恰好需要取這個極限。這樣,微單元模型是一個普適的構造,也清楚了。在pp波這個特殊的背景之下,對應的場論描述也是一個可積系統。
全息攝影是指一種記錄被攝物體反射波的振幅和位相等全部信息的新型攝影技術。普通攝影是記錄物體面上的光強分布,它不能記錄物體反射光的位相信息,因而失去了立體感。全息攝影采用激光作為照明光源,并將光源發出的光分為兩束,一束直接射向感光片,另一束經被攝物的反射后再射向感光片。兩束光在感光片上疊加產生干涉,感光底片上各點的感光程度不僅隨強度也隨兩束光的位相關系而不同。所以全息攝影不僅記錄了物體上的反光強度,也記錄了位相信息。人眼直接去看這種感光的底片,只能看到像指紋一樣的干涉條紋,但如果用激光去照射它,人眼透過底片就能看到原來被拍攝物體完全相同的三維立體像。一張全息攝影圖片即使只剩下一小部分,依然可以重現全部景物。全息攝影可應用于工業上進行無損探傷,超聲全息,全息顯微鏡,全息攝影存儲器,全息電影和電視等許多方面。
全息攝影的拍攝要求
為了拍出一張滿意的全息照片,拍攝系統必須具備以下要求:
(1)光源必須是相干光源
通過前面分析知道,全息照相是根據光的干涉原理,所以要求光源必須具有很好的相干性。激光的出現,為全息照相提供了一個理想的光源。這是因為激光具有很好的空間相干性和時間相干性,實驗中采用He-Ne激光器,用其拍攝較小的漫散物體,可獲得良好的全息圖。
(2)全息照相系統要具有穩定性
由于全息底片上記錄的是干涉條紋,而且是又細又密的干涉條紋,所以在照相過程中極小的干擾都會引起干涉條紋的模糊,甚至使干涉條紋無法記錄。比如,拍攝過程中若底片位移一個微米,則條紋就分辨不清,為此,要求全息實驗臺是防震的。全息臺上的所有光學器件都用磁性材料牢固地吸在工作臺面鋼板上。另外,氣流通過光路,聲波干擾以及溫度變化都會引起周圍空氣密度的變化。因此,在曝光時應該禁止大聲喧嘩,不能隨意走動,保證整個實驗室絕對安靜。我們的經驗是,各組都調好光路后,同學們離開實驗臺,穩定一分鐘后,再在同一時間內爆光,得到較好的效果。
(3)物光與參考光應滿足
物光和參考光的光程差應盡量小,兩束光的光程相等最好,最多不能超過2cm,調光路時用細繩量好;兩速光之間的夾角要在30°~60°之間,最好在45°左右,因為夾角小,干涉條紋就稀,這樣對系統的穩定性和感光材料分辨率的要求較低;兩束光的光強比要適當,一般要求在1∶1~1∶10之間都可以,光強比用硅光電池測出。
(4)使用高分辨率的全息底片
因為全息照相底片上記錄的是又細又密的干涉條紋,所以需要高分辨率的感光材料。普通照相用的感光底片由于銀化物的顆粒較粗,每毫米只能記錄50~100個條紋,天津感光膠片廠生產的I型全息干板,其分辨率可達每毫米3000條,能滿足全息照相的要求。
(5)全息照片的沖洗過程
沖洗過程也是很關鍵的。我們按照配方要求配藥,配出顯影液、停影液、定影液和漂白液。上述幾種藥方都要求用蒸餾水配制,但實驗證明,用純凈的自來水配制,也獲得成功。沖洗過程要在暗室進行,藥液千萬不能見光,保持在室溫20℃左右進行沖洗,配制一次藥液保管得當,可使用一個月左右。
