近幾期,刻意使用動量定律剖析電磁問題,整體體驗,比常規方式要簡略許多,解析的篇幅和估算量也遠大于常規方式。
重點說一下,洛倫茲力的沖量:算不算超綱內容?不算。
從最開始學習速率定義開始,就指出極限思維;學習v-t圖面積意義,就學習積的技巧;學習時間,就分出了時刻和時間間隔的區別。
由此,基于基礎定義的深刻理解,自行推論洛倫茲力的沖量規律推論,應是認知計劃中的事情。
【真題例一】:2023山東卷壓軸題
初看題目動量定理人船模型解析,有經驗的朋友,會說“擺線多項式”“配速法”這些詞匯,如何叫無關緊要。
作者傾向于非必要不要有“新提法”,配速法,本質就是參考系的任意性或則叫靈活性;擺線多項式,就是數學運動合成的物理表現方式。
恰容易忽視的是數學基礎概念本身的靈活運用與拓展。
【真題例二】:2022年長沙卷壓軸題
動量向能量的轉換,化繁為簡。
假如在一開始就完成框架上的剖析轉換,就規避了前面可能的“重復運算找規律”的時間消耗問題。
這個題目最大的啟發就是:學習知識有好多,并且調用知識的優先級有順序。
簡言之:動量、能量、關聯搞框架,運動與力搞細節。
【真題例三】:2022山東卷壓軸

磁周期中沖量的規律性:電動力與磁位移的關系,通過洛倫茲力的沖量來鏈接。
以上規律的發覺,在第三問的求解中:剖析邏輯更清晰;運算可以更簡單。
看見好多解析,其實都走了重復運算找規律的路子。(如同作者第一次面對問題一樣)
【真題例三】:2023河南安陽初一期中
雙向動量定律:力與速率極限的關系,通過動量定律鏈接。
倘若不是這樣,雖然也就只能寫個“解”了。
【真題例四】:2023杭州卷壓軸題
這道題給作者的啟發:電磁運動問題,本就不只有幾何剖析。
第二問的處理,幾何剖析方式其實可以求解,然而臨場解題情況下,可能發覺角度沒這么省時間。
從第二問引入磁場中動量定律,這么二三問就可以連貫遞進的解決問題。
用動量與不用動量,本題考場上的區別大約就是“5分鐘”與“15分鐘”的區別。
【真題例五】:2023廣東新鄉初一期中

動量定律的使用:不是一看如同動量定律。
而是,動量剖析如同動能定律一樣,一開始就首先調用的剖析工具,在這個多選題中,用到動量知識,時間省一半。
【真題例六】:2023山東卷壓軸
動量剖析:從一開始就排除多解問題中的障礙,直接在主線上求解問題。
另外,本題最大的啟發是:
1.動量除了解決碰撞問題,還解決炸裂問題;
2.除了解決動能不變問題,能夠解決動能變化問題。
這題目的不同,就是值得推敲的緣由所在。
綜上,關于動量定律的使用大致分類:
1.動量守恒,雙向守恒,剖析系統到判定個體;
2.動量守恒與動能不變,精典彈碰組合,內容推論也不僅僅是前后速率和估算公式,還有許多,2023全省乙的解析中有綜合應用;
3.動能定律與能量轉換,兩者均可以變,但并不阻礙兩種視角,兩種確定性關系的發覺動量定理人船模型解析,聯立求解;
4.那就是磁場中洛倫茲力的動量定律,總能見奇效,尤其是在復合場中。
以上,動能知識應用體驗總結,分享交流。
